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I t  is to be observed tha t  the da ta  of Hendr icks  are 
subs tan t ia l ly  confirmed in so far as concerns the co- 
ordinates of the halogens and the pair  of halogens 
between which are the  benzene rings. There is, how- 
ever, disagreement  in the orientat ion and shape of the 
benzene rings, which, according to Hendricks,  should 
be hexagonal  s t rongly deformed rings, almost  parallel  
to the 001 plane. 
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It  is shown that  there exists an orthogonal unit vector system E and a symmetric matr ix ), 
(together with its inverse ),*) such that  the four expressions 

a ---- ) ,E; E ---- ),a.*; a* ---- y ' E ;  E ---- ),*a 

give the transformations between the systems a, a* and E. The )'-matrices are then defined by 
the matr ix equations ),2 ~ g and y,2 __ g , .  The solutions are given explicitly for all two-dimen- 
sional nets and for all symmetrical three-dimensional lattices. Methods are suggested for the 
numerical calculation for the triclinic lattice. Uses for the E-systems in crystal calculations are also 
discussed. 

This paper  is concerned with normal  orthogonal vector 
tr iplet  systems Ei which are unique among the in- 
f ini tely m a n y  possible normal  orthogonal systems ei 
in the sense tha t  the: l inear t ransformat ion which 
expresses the tr iplet  Ei in terms of a~ is the same as 
tha t  which expresses the a* in terms of the E~. 

Al though li t t le appl icat ion has as yet  been made  
of these systems, their  theoretical  interest  seems to 
meri t  a presentat ion of their  properties. 

P r o p e r t i e s  of  t h e  E - s y s t e m s  

For the axial  sys tem ai, represented in ma t r ix  notat ion 
by  the symbol  a, the metr ic  tensor has a ma t r ix  
representat ion g wi th  components 

gij = (aia~) (la) 

while the de te rminan t  of the  mat r ix  g has  the value g. 
Similar ly  the reciprocal system a* is represented by  
the ma t r ix  symbol  a* and has for reciprocal metric 

* Suppor ted  by  a gran t  f rom the Nat ional  Cancer Ins t i tu te ,  
:National Ins t i tu tes  of Heal th ,  U.S. Public Heal th  Service. 

tensor the  ma t r i x  g* with components  

g* = ( a ' a * ) ,  ( lb) 

with de te rminan t  g*. The ma t r ix  g* is thus  the inverse 
of g, i.e. 

g g * =  1 (2a) 
and 

gg* = 1 .  ( 2b ) 
I t  is well known (cf. Ewald,  1923, note 1) tha t  

a = g a *  (3a) 
and also tha t  

a* = g * a .  (3b) 

We now define a vector sys tem E (without fur ther  
specification of its properties), and a ma t r ix  y with 
components ~'ij such tha t  

a = y E  (4a) 
and 

E = y a * .  (4b) 

If y*  is the inverse mat r ix  to y we have 

a* ---- y * E  (5a) 
and 

E ---- y * a .  (5b) 
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830 AN ORTHOGONAL UNIT VECTOR TRIPLET 

N e t  

R h o m b i e  

a 1#a2  a l e # n / 2  
An = gn+ 1/g 
Azs = g~+ 1/g 

E q u i l a t e r a l  

a 1 = 6 2 ~ a 

(~ = COS 0~12 ~ 8 ----- s i n  5%12 

Table 1. y-Matrices for plane nets 
y = g½ = y,-1 

AnI(An + A22)½ gl~I(Au + A~2) 
g121(An-4-A~a)½ A22/(All + A2~)½ 

a a c  

~(1+8)½ 1/2.0 +,,)½ 

a c  a 

V 2 . ( l + s )  ½ 7 2  (1 nt-s)½ 

H e x a g o n a l  

a I ---- a~. = a a ( 1 - ~  1/3) - - a  

oq~ = 2~t13 21/2 1/2. (1 + 1/3) 

- - a  a ( 1 + 1 / 3 )  

1 / 2 . ( 1 + 1 / 3 )  21/2 

O r t h o g o n a l  

a 1 : #  a 2 a 1 0 

~1~ = xt/2 0 a 2 

y ,  = g,½ = y-1 

* * * A*I/(A~+A*9)½ g~g/(An+A~,)½ 
ghl(Ah+A*,)½ A*J(A*~-I-A*2)½ 

S q u a r e  

a 1 ----- a z ---- a a 0 

(X12 = ~ / 2  0 a 

( l + s ) ½  - - c  

}/2. as 1/2. as(1 +s)½ 

- c  (l+s)½ 
1/2.as(1 +s)½ I/2.as 

(1 A- 1/3) 1/2 
a1/6 aV3. (1A- 1/3) 

V2 (l + V3) 
a]/3. (1 A- V3) aV6 

llc h 0 
0 1/a~ 

l/a 0 
0 l/a 

By a combination of equations (3), (4) and (5) it is 
clear that  

),9. __-- p, (6a) 
and 

y ,9  = g , .  (6b) 

The system E thus satisfies the transformation con- 
dition specified in the first paragraph of this paper 
and we have shown that  the required transformation 
matrix is a square root of the metric tensor matrix 
for the axial system. The existence of the triplet E 
thus follows from that  of a square root for the matrix 
g and for its inverse g*. The fact that  E is normal 
and orthogonal then depends on the following ar- 
gument. 

Since y* is the inverse of y we have 

} ' q~  : (~ik, (7) 

in which summation is implied by the repeated index 
j and (~k is the Kronecker delta. We also have the 

definition of the reciprocal ~riplet 

(a~a*) - -  5~j. (8) 

We now expand equations (4b) and (Sb) in the forms 

Ei = yipa* (9a) 
and 

Ej  = ~ a q ,  (9b) 

and from these expressions obtain the scalar products 

~' ip~Yqj~pq (EiEj)----- * * * yipy/q(avaq) ---- ----- YipY~'j ---- ~q (10) 

The triplet E thus forms a normal orthogonal system, 
and the matrix y satisfies the required transformation 
conditions. 

C a l c u l a t i o n  of  t h e  m a t r i x  y 

The n 2 components of the matrix y in n dimensions 
must satisfy the n ~ equations 

~ik~ki : gij. (11) 

Since the matrix g is symmetric, and it can be shown 
that  y,  its square root, is also symmetric, only 
½n(n~-l) of the equations (11) are independent. In 
two dimensions and for simple cases in three dimensions 
these equations are easily soluble. 

The forms which the matrix y takes for the various 
two-dimensional nets are exhibited in Table 1 from 
which it appears that  an explicit solution of the 
problem can be found for the general plane net. In 

three dimensions explicit solutions can be found for 
all cells except the triclinic, and the latter must also 
be taken to include the primitive cells of the ortho- 
rhombic and monoclinic centered lattices. The ex- 
plicit results for three dimensions are shown in Table 2. 

Examination of the tables indicates that  for the 
orthogonal nets and lattices the directions of the 
vectors Ei are the same as the coincidingdirections 
of the vectors ai and a*. The unit length of Ei is 
clearly the geometric mean of the lengths a i and 1/ai 
of the base and reciprocal vectors respectively. In the 
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Lat t i ce  
Monoclinic  

(X12 = 0¢23 = ;;~/2 

A l l  ~--- g11-~" ]/(gg~9.) 
A33 --~ g33-~- ]/(gg2*2) 

Table 2. y-Matrices for space lattices 
) f  = g½ = ~*- -1  ) f*  = g'g = )f--1 

All(A33-~-A11)½ 0 g31/(A33-~.-A11)½ A~I/(A~3-~-A~I)~ 0 - * / A *  ~-A* ~½ u31x 33 ~ 111 

0 a 2 0 0 a~ 0 

ga1/(A3a'~-All)½ 0 A33/(A33"~-A11) ½ ~311x0"//A*33+A*11,1½ 0 A33/(A33--~-All)½ 

H e x a g o n a l  

a 1 = a2, 0¢12 ~--- 27~/3 

0(23 = 0 ( .31  = Y'~/2 

al(1 ~- ]/3) - - a  1 0 (1~- l/3) V2 
2 l/2 ]/2. (1 ~- ]/3) a 1 ]/6 al  V3. (1 ~- ]/3) 

--  a 1 al( 1 + l/3) 0 ]/2 ( 1 -t- ]/3) 
] /2 . (1+] /3 )  2]/2 al]/3.  (1 + ]/a ) al]/6 

0 0 a 3 0 0 

0 

l/% 

R h o m b o h e d r a l  

a 1 ----- 69 ~-- a a = a 

0~12 ~ 0~23 = 0(31 ~ 0¢ 

COS 0¢ ~ 0 

A = ]/(lq-2c) B = l /(1--c) 

a(A + 2B)/3 a(A--B)/3 a(A--B)/3 
a(A--B)/3 a(A + 2B)/3 a(A-- B)/3 
a(A--B)/3 a(A--B)/3 a(A+2B)/3 

(2A ~ - B ) / 3 a A B  -- (A - - B ) / 3 a A B  -- (A - - B ) / 3 a A B  
--  ( A - - B ) / 3 a A B  (2A ~ - B ) / 3 a A B  -- (A - - B ) / 3 a A B  

--  ( A - - B ) / 3 a A B  -- ( A - - B ) / 3 a A B  (aA + B ) / 3 a A B  

O r t h o g o n a l  

a 1 0 0 1/a 1 0 0 

0 a 2 0 0 1/a 2 0 
0 0 a a 0 0 1/a a 

more general systems the notion of geometric mean is 
given a wider meaning, as indicated in Fig. 1 in which 
it is seen tha t  the E-system lies between the a and a* 
systems for the rhombic net in position and in dimen- 
sions. 

While most of the results of Tables 1 and 2 were 
obtained by solution of special cases of the equations 
(11), theoretical discussion is facilitated by reference 
to more general theory, and it is only in terms of this 

02 ~'2 O; 

1 ;,°: 
I / /  g, 

Fig.  1. E - s y s t e m  for a p lane  lat t ice.  The  a - sys t em is ind ica ted  
b y  l ight  full  lines, t he  reciprocal  s y s t e m  a* by  dashed  lines, 
a n d  the  o r t h o n o r m a l  E - s y s t e m  b y  h e a v y  full lines. 

more general theory tha t  it is at all convenient to deal 
with the case of the general tricliv" lattice. 

The calculation of the 2 n roo% an (n × n) matr ix 
is discussed in many places (e.g. Wedderburn, 1934; 
Frazer, Duncan & Collar, 1950). The matrix ~, can 
be transformed to diagonal form by the similarity 
transformation 

up, u -1  ----- A ,  (12) 

in which u is an orthogonal matrix and the matrix A 
is of the form (n = 3): 

A = ~9 • (13) 
0 h3 

In this matrix, the Jti are the roots of the characteristic 
equation 

A ( ~ t ) = l ~ t l - g l =  ~ - g n  --g12 -g13 = 0  
-g21 )--g22 --g23 (14) 
--g31 --g32 ~-g33 

of the matr ix g. In  two dimensions, equation (14) 
can be solved explicitly as a quadratic and in three 
dimensions, for all the cases of Table 2, this equation 
is factorable. In  the general triclinic case it must be 
solved by numerical methods as a cubic equation. I t  
may  be shown from the properties of the matrix g 
tha t  equation (14) has three real positive roots, the 
components of the matr ix A. 

The transformation matrix u is calculated from the 
matrix equation 

u g  = Au (15) 

obtained from (12) by post-multiplication by u. In 
component form (15) is expressed in the nine equations 

uil(gn--~i)+ui2921 ~Uiag31 = O, | 
q~ilg12 -~-Ui2(g22--~i)~-Ui3g32 = 0 ,  [ (16) 
ui lg l3  -~u i2ge3  ~-Ui3(g33--~i)-~ O ,  

and in addition there are three equations 
2 2 2 

Uil~-Ui2~-Ui3 ~-- 1 .  (17) 

The condition (14) on the coefficients of the equations 
(16) indicates tha t  at least one non-trivial solution 

53* 
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exists and tha t  in case of mult iple  roots for (14), 
hnfinitely m a n y  such solutions m a y  exist. F rom the 
solutions of (16) and (17) we need choose only one for 
the  t ransformat ion (12). 

The fact tha t  the relations between mat r ix  functions 
are preserved under  s imilar i ty  t ransformat ions enables 
us to write 

u g i u  -1 = u y u  -1 = A½, (18) 

in which A½ is of course 

o ) 
2~ 0 . (19) 

0 2~ 
Equat ion  (18) can be wri t ten 

g½ -- y = u-~A½u, (20) 

which is the solution to our problem. There are clearly 
2 n values for the mat r ix  A½ and hence 2 ~ values for 
the mat r ix  y since it  can be shown tha t  a change in 
the order of naming  the roots ~t i does not  affect the 
result, nor does any  ambigu i ty  in the choice of u 
from among the  solutions to (16) and (17). 

Each of the  2 = values of y can be used to define an 
E-system via  equations (4) and  (5). We have, however, 
selected only one of these systems as of crystallo- 
graphic  interest  and tha t  is the system for which all 
roots in the diagonal of the mat r ix  (19) are t aken  as 
positive to correspond to the positive values of the 
terms of the mat r ix  (13). In  this way we insure tha t  
the mat r ix  y shall  correspond to a homogeneous 
strain,  as does the mat r ix  g. For  any  other choice of 
signs* in (19), the  y - m a t r i x  will involve strain com- 
bined with an inversion, reflection, or rotation. The 
la t ter  par t  of the operation is then  removed by  a second 
applicat ion leaving the operation yz as a pure s train 
once more. 

Yet  another  method for the  calculation of y is 
contained in an  applicat ion of Sylvester 's  theorem 
(cf. Frazer,  Duncan  & Collar, 1950, § 3.9-3.10). We 
define the mat r ix  

f(~)  = ~ t l - - ~ , ,  (21) 

where g is any  matr ix .  Then f(2i) is ma t r ix  obtained 
from f(2) by  subst i tu t ing in it  one of the roots of 
equat ion (14). F(~-) is the adjoint  of the ma t r ix  
f(~ti), i.e. the transposed ma t r ix  of the cofactors of the 
components of f(~ti). Sylvester 's  theorem then  states 
t ha t  a funct ion P(g)  of the ma t r ix  g is given by  

P(g) = ~ P(~)z0(~) (22) 

* It was thought for a long time by the author that the 
2 n possible E-systems corresponded merely to the 2 n ways of 
choosing base vectors from an axial cross in n dimensions. 
While this is true in special cases, it is not true in general. 
This can be seen most easily in the case of the rhombic net 
(Table 1). A second solution is obtained by replacing ~/g by 
--~/g in the solution given. The third and fourth solutions are 
obtained from the first two by inversion. It is then clear that 
in general the relation between the first two solutions is not 
merely a simple interchange of axes. 

in which the characteristic roots 2i are distinct* and  
the matr ices  Z0(~i) are given by  

Z 0 ( ~ ) - -  F(~t~)/A'(~i) (22a) 
in which 

A'(2~) = [dA(2) /d~]  ~=~ . (22b) 
Thus 

y = g½ = ~ ,~Z0(2~) (23) 
i 

is an a l ternat ive  form for the solution to our problem. 
From this expression we see clearly tha t  there are 
2 n roots and tha t  the  result  is independent  of the  
order of naming  of the roots and is also independent  
of the choice of u in (20) since u does not  appear  
explici t ly in (23). 

N u m e r i c a l  e x a m p l e  

To i l lustrate the method for calculating y and  hence 
E for a general triclinic crystal,  the  results of the  
calculation for copper sulphate  pen tahydra te  are 
given. The latt ice constants (Beevers & Lipson, 1934) 
are 

a(al)  = 6.12 A; b(a2) = 10.7 A; c(aa) -- 5.97 A ;  
c~(cqa ) = 82 ° 16'; fl(c~al ) = 107 ° 26';  ~(c~1~ ) = 102 ° 40 ' ;  

V = 3 6 3  A a . 

The mat r ix  g and its adjoint  G then  take  the forms~f 

[ 37.4544 -14-3451 
g = [ - 1 4 . 3 4 5 1  114.4900 

\ - 1 0 . 9 6 4 3  8.5917 
and 

/4006.71 417.39 
G ~  417.39 1214.69 

\1131.98 --164.42 

- 10.9643\ 
8.5917~ (A 9 ) 

35.6409/ 

1131.98 ) 
--164.42 (A4). 
4082.11 

From these one calculates the coefficients of the  
equat ion (14), i.e. 

A(2) = 2s--29 t r  g-4-2 t r  G - - g  ----- 0 

in which tr  g s tands for the trace (i.e. the  sum of the  
leading diagonal  terms) of the ma t r ix  g. The numer ica l  
values of these quanti t ies  are" t r  g = 187.5853 Ag; 
tr  G ----- 9303.51 •4; and  g = 131,666 A e. As a check, 
one computes g½ = 362.85 ~ 363 A s for the  cell 
volume. The solution of the characteristic equat ion b y  
Hornet ' s  method  and factoring then  leads to 21 = 
25-3958 A~; 2~ = 43.7882 A2; 2a = 118-4014 A ~ and  
hence to ~/~t 1 = 5.0394 A; ~/22= 6.6172 A;  V 2 a =  

10.g~12 A. Substitution of the ~ values in (21) then 
leads to values of the three matr ices  f(2~) and of thei r  
three adjoints  F(2i) which are not  given here to save 
printing.  The values for the quanti t ies  (22b) are then  
computed as A'(21) = 1710.59 ~ ;  A'(2~) = --  1372.32 A ~; 
A'(~s) ---- 6939,46 A ~. The quanti t ies  V~i/A'(~i) are then  

* If the roots ).i are not distinct, a special form of Sylvest~r's 
theorem must be used (Frazer et al., 1950, § 3.10). 

Note that several extra figures are carried throughout to 
avoid rounding errors (of. Scarborough, 1950, chap. 1 and also 
Frazer et al., 1950, chap. 4). 
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computed and used as multipliers for the matrices 
F(~ti) in computing the expression (23). If positive 
signs for the roots are used we obtain 

/ 59969 -0s366 -oss94\  
y = ~--0.8836 10.6565 0"47441 • 

\--0.8894 0.4744 5.8842/ 

From this the adjoint r can be calculated, the deter- 
minant ? and hence the matrix 

/0.17220 0.01240 0"02503\ 
y* ------ ~0.01240 0-09507 --0-00579~, 

\0.02503 -0.00579 0.01622/ 
which completes the solution to the problem. 

D i s c u s s i o n  
The existence of the E-systems was first recognized 
in the course of the consideration of orthogonal systems 
suitable for use with triclinic and monoclinic crystals 
in the discussion of bond lengths and bond angles. 
I t  was realized if coordinate vectors only were under 
discussion, one matrix and its inverse were needed for 
transformation between the base lattice and the 
e-system. If, in addition, indices and direction Vectors 
were needed, a second matrix and its inverse would 
be needed to provide the transformation between the 
reciprocal lattice and the e-system. Thus a total of 
four transformation matrices is required for work in 
terms of a general e-system while only two matrices 
y and y* are needed if an E-system is used. 

For those cases in which the y-matrices can be 
written explicitly in terms of the lattice constants 
(e.g. Tables 1 and 2) the E-systems may prove to be 
very useful. In the orthogonal lattices the choice of the 
E-systems is obvious. In other systems a number of 
possible e-systems are available and it may be that  
the choice of the E-system will prove to be ad- 
vantageous. 

I t  is unfortunate that, for the triclinic system in 
which the use of an E-system would undoubtedly be 
the most profitable, the calculation of the y-matrices 
is the most difficult. I t  is expected, however, that  if the 
E-systems prove to be of value, the technique of the 
calculation of the y-matrices can be improved con- 
siderably. 

The existence of the E-systems introduces an 
interesting speculation. The problem of the diffraction 
analysis of structures depends on the interaction of 
data which belong in crystal space, such as atomicity, 
positivity, closest approach etc., with data, such as 
diffraction amplitude, phase, which belong in reci- 
procal space. The transformation of data from one 
space to the other always results in considerable in- 
crease in complication, as is indicated by the nature of 
the many ingenious methods of direct structural 
analysis which are now under consideration. The 
existence of an E-system 'midway' between the 
a-system and the a*-system suggests the possibility 
of a function space occupying a similar position be- 
tween crystal space and transform space. There seems 
to be little indication of the nature of the functional 
transformation needed, but the y-matrix suggests a 
coordinate transformation which would provide a 
geometric basis for such a functional space. 
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The crystal structure of phosgene is tetra~onal C~h-I41/a with 16 phosgene molecules in a unit cell 
of dimensions a = b =- 15.82, c ---- 5.72 •. At --160 ° C., the crystal is completely ordered, and the 
residual entropy of 1.63 e.u. remains unexplained. Parameters, referred to a center of symmetry as 
origin, are for Cll, (0.0394, --0.1417, 0.150); for C12, (0.1038, --0.0528, --0.250); for O, (0.1982, 
--0-1306, 0.039); and for C, (0.1295, --0.1126, 
1.74-4-0"02 /~, C-CI~---- 1-74-4-0"02 /~, C=O = 1. 

Introduct ion 

As a result of a careful calorimetric study in which 
the spectroscopic assignment (Thompson, 1941 ; 

-0-004). Molecular dimensions are C-Cll---- 
15±0.02 /k, and Cll-C-C19---- 111"0-4-1.5 °. 

Stevenson & Beach, 1938a, b, c) and molecular geometry 
(Broekway, Beach & Pauling, 1935) were employed, 
Giauque & Jones (1948) have attributed a residual 
entropy of 1.63 e.u. to phosgene. The purpose of.the 


