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It is to be observed that the data of Hendricks are
substantially confirmed in so far as concerns the co-
ordinates of the halogens and the pair of halogens
between which are the benzene rings. There is, how-
ever, disagreement in the orientation and shape of the
benzene rings, which, according to Hendricks, should
be hexagonal strongly deformed rings, almost parallel
to the 001 plane.
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An Orthogonal Unit Vector Triplet Associated with a General Lattice*

The Institute for Cancer Research and Lankenau Hospital Research Institute

It is shown that there exists an orthogonal unit vector system E and a symmetric matrix y
(together with its inverse y*) such that the four expressions

give the transformations between the systems a, a* and E. The y-matrices are then defined by
the matrix equations y? = g and y*? = g*. The solutions are given explicitly for all two-dimen-
sional nets and for all symmetrical three-dimensional lattices. Methods are suggested for the
numerical calculation for the triclinic lattice. Uses for the E-systems in crystal calculations are also

discussed.

This paper is concerned with normal orthogonal vector
triplet systems E; which are unique among the in-
finitely many possible normal orthogonal systems e;
in the sense that the. linear transformation which
expresses the triplet E; in terms of a, is the same as
that which expresses the af in terms of the E,.

Although little application has as yet been made
of these systems, their theoretical interest seems to
merit a presentation of their properties.
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a=yE; E=ya* a*=y*E; E = y*a
tensor the matrix g* with components
g5 = (afaf), (10)
with determinant g*. The matrix g* is thus the inverse
of g, i.e.
gg* =1 (2a)
and
g*=1. (2b)
It is well known (cf. Ewald, 1923, note 1) that
a = ga* (3a)
and also that
a* = g*a . (3b)

Properties of the E-systems

For the axial system a;, represented in matrix notation
by the symbol a, the metric tensor has a matrix
representation g with components

95 = (a:a) (la)

while the determinant of the matrix ¢ has the value g.
Similarly the reciprocal system a} is represented by
the matrix symbol a* and has for reciprocal metric

* Supported by a grant from the National Cancer Institute,
National Institutes of Health, U.S. Public Health Service.
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We now define a vector system E (without further
specification of its properties), and a matrix y with
components y;; such that

a=YE (4a)

and E = ya*. (4b)
If y* is the inverse matrix to y we have

a* = y*E (5a)

and E=y*a. (5b)

53



830 AN ORTHOGONAL UNIT VECTOR TRIPLET
Table 1. y-Matrices for plane nets
Net Y= gt = y*! Yt = g*t = vyt
Rhombic
ayF ay o5 F 72 Ayl(Ay+Ap)} g10/(Ay+4,) AR/(AN+ AR gh/(Ah+ AR
Ay =gutve Grol (Ayy+Ag0) Agof(A4)+4p5)} ghl(AR+ ALY A%j(AY+ A%}
Az = goat+ Vg
Equilateral :
a ac (14s) —c
A, = Ay = @ ——(1+8)§ —_— _—
1o V2 V2. (14-5)% y2.as V2.as(1+5)t
0y &= /2 or 273 s
. ac a —c (14s)
€ = COS gy, 8 = Sin & _ —(14s)}
1 1 V2.(1+9) yali+e) V2.as(1+s)t  V2.a8
Hexagonal
a=a,=a a(l+y3) —a (14+¥3) V2
Oyg = 2n/3 2y2 V2.(14V3) ayé ay3.(1+V3)
—a a(l+y3) Y2 (14V3)
V2. (A+V13) 272 ay3.(1+73) ay/6
Orthogonal
ay F a, a, 0 1/a, 0
Oy = 7[2 0 ay 0 1/a,
Square
o =da,=a a 0 l/a 0
&9 = 7[2 0 a 0 lja

By a combination of equations (3), (4) and (5) it is
clear that (6a)

(60)

Y:=28
Y*2=g*.

The system E thus satisfies the transformation con-
dition specified in the first paragraph of this paper
and we have shown that the required transformation
matrix is a square root of the metric tensor matrix
for the axial system. The existence of the triplet E
thus follows from that of a square root for the matrix
¢ and for its inverse g*. The fact that E is normal
and orthogonal then depends on the following ar-
gument.
Since y* is the inverse of y we have

= aik:

and

(7)

in which summation is implied by the repeated index
j and &y is the Kronecker delta. We also have the

definition of the reciprocal triplet

ViV

8)
We now expand equations (4b) and (5b) in the forms
(9)
(9)

(aaf) = 0;.

Ei = yipa;
E; = yla,,

and from these expressions obtain the scalar products

and

(E:E)) = yipvi(agay) = yuyioe = vipvy = 045 (10)

The triplet E thus forms a normal orthogonal system,
and the matrix y satisfies the required transformation
conditions.

Calculation of the matrix y

The #2 components of the matrix y in » dimensions
must satisfy the n? equations

YikVej = Gij - (11)

Since the matrix g is symmetric, and it can be shown
that y, its square root, is also symmetric, only
in(n+1) of the equations (11) are independent. In
two dimensions and for simple cases in three dimensions
these equations are easily soluble.

The forms which the matrix 7y takes for the various
two-dimensional nets are exhibited in Table 1 from
which it appears that an explicit solution of the
problem can be found for the general plane net. In

three dimensions explicit solutions can be found for
all cells except the triclinic, and the latter must also
be taken to include the primitive cells of the ortho-
rhombic and monoclinic centered lattices. The ex-
plicit results for three dimensions are shown in Table 2.

Examination of the tables indicates that for the
orthogonal nets and lattices the directions of the
vectors E; are the same as the coinciding directions
of the vectors a; and a¥. The unit length of E; is
clearly the geometric mean of the lengths-a; and 1/a;
of the base and reciprocal vectors respectively. In the
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Table 2. y-Matrices for space lattices

Lattice Yy =g} = y*1
Monoclinie .
&g = Ggg = 7T[2 “111(“1334“‘111)é 0 931/(‘4334‘*411)1’
Ay = g1+ Viggd) 0 a,

Azz = g3+ V(99%)

931/(A33 '*‘Au)é 0 Aaa/(Aaa'FAu)i

Hexagonal
_ _ a,(14-y3) —a,
ay = ay, Gy = 27y 272 V2.(1473)
e —a _ ay(l+y3)
% = Oy = 72 RIS T
0 0
Rhombohedral
a =a,=a,=a a(A+2B)[3 a(4—DB)/3
Xp == Oigg == Oigy = & a(A—B)/3 a(4d+2B)/3
cos o = ¢ a(A—B)|3 a(A—DB)/3
A = J(14-2¢) B = y(1—c¢)
Orthogonal
Oyp = Ogg = Oigy = 7[2 1 0
0 a,
0 0

more general systems the notion of geometric mean is
given a wider meaning, as indicated in Fig. 1 in which
it is seen that the E-system lies between the a and a*
systems for the rhombic net in position and in dimen-
sions.

While most of the results of Tables 1 and 2 were
obtained by solution of special cases of the equations
(11), theoretical discussion is facilitated by reference
to more general theory, and it is only in terms of this

~y

a, E, a

A
|
|
|
t
|
|
'
'
1
{

N
>

Fig. 1. E-gsystem for a plane lattice. The a-system is indicated
by light full lines, the reciprocal system a* by dashed lines,
and the orthonormal E-system by heavy full lines.

more general theory that it is at all convenient to deal
with the case of the general triclir’ lattice.

The calculation of the 2" roots . an (n X %) matrix
is discussed in many places (e.g. Wedderburn, 1934;
Frazer, Duncan & Collar, 1950). The matrix g can
be transformed to diagonal form by the similarity
transformation

ugu-l=A, (12)
in which u is an orthogonal matrix and the matrix A
is of the form (n = 3):

y* = g* = y?

ATl/(A:ts'f‘ATl)’l' 0 gg‘l(A:’;s—*—Afl)i
0 a¥ 0
g3/(A%x+AF)E 0 A% /(A% +Aa})t

0 (14-¥3) y2 0
a,/6 @, V3. (1+3)
0 y2 (14-¥3) 0
a,V3.(14+y3) a,)/6
a 0 0 1ay
a(A—B)[3 (244 B)/3a4AB —(4—B)/3¢AB — (4 —B)/3aAB
a(4—B)/|3 —(4—B)/3aAB (24+B)/3aAB —(4—B)[3aAB
a(4+-2B)[3 —(4A—B)/3a4B —(A—B)/3¢AB (a4-+B)/3aAB
0 1/a, 0 0
0 0 1/a, 0
a, 0 0 1/a,
A 0 0
A= (0 Ay O ) . (13)
0 0 Ag

In this matrix, the A; are the roots of the characteristic
equation

A(A)=|A1—g|=|A—gy; —Y12 —013|=0
—fa1  A—Gar 23 (14)
—9a —~Gse  A—Gas

of the matrix g. In two dimensions, equation (14)
can be solved explicitly as a quadratic and in three
dimensions, for all the cases of Table 2, this equation
is factorable. In the general triclinic case it must be
solved by numerical methods as a cubic equation. It
may be shown from the properties of the matrix g
that equation (14) has three real positive roots, the
components of the matrix A.

The transformation matrix u is calculated from the
matrix equation

ug = Au (15)

obtained from (12) by post-multiplication by u. In
component form (15) is expressed in the nine equations

Us1(911—Ai) +%ia G0 + U395 =0,
Us1 G1e +Uig(F2o— Ai) +%izG32 =0, (16)
Ui1913 +UipGas +%i3(g33—A)= 0,

and in addition there are three equations
uptufptul =1.

The condition (14) on the coefficients of the equations
(16) indicates that at least one non-trivial solution

(17)

53*
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exists and that in case of multiple roots for (14),
infinitely many such solutions may exist. From the
solutions of (16) and (17) we need choose only one for
the transformation (12).

The fact that the relations between matrix functions
are preserved under similarity transformations enables
us to write

ugtu-1 = uyu-! = At (18)
in which At is of course
Ao o0
At:(o 7 0). (19)
o o A
Equation (18) can be written
gt =y =ulAb, (20)

which is the solution to our problem. There are clearly
2" values for the matrix A? and hence 2" values for
the matrix y since it can be shown that a change in
the order of naming the roots A; does not affect the
result, nor does any ambiguity in the choice of u
from among the solutions to (16) and (17).

Each of the 2" values of y can be used to define an
E-system via equations (4) and (5). We have, however,
selected only one of these systems as of crystallo-
graphic interest and that is the system for which all
roots in the diagonal of the matrix (19) are taken as
positive to correspond to the positive values of the
terms of the matrix (13). In this way we insure that
the matrix y shall correspond to a homogeneous
strain, as does the matrix g. For any other choice of
signs* in (19), the y-matrix will involve strain com-
bined with an inversion, reflection, or rotation. The
latter part of the operation is then removed by a second
application leaving the operation y? as a pure strain
once more.

Yet another method for the calculation of y is
contained in an application of Sylvester’s theorem
(cf. Frazer, Duncan & Collar, 1950, § 3-9-3-10). We
define the matrix

f2) = 21-g,

where g is any matrix. Then f(4;) is matrix obtained
from f(1) by substituting in it one of the roots of
equation (14). F(4;) is the adjoint of the matrix
f(1,), i.e. the transposed matrix of the cofactors of the
components of f(4;). Sylvester’s theorem then states
that a function P(g) of the matrix g is given by

P(g) = %‘P(li)zo(li) (22)

@1

* It was thought for a long time by the author that the
2" possible E-systems corresponded merely to the 27 ways of
choosing base vectors from an axial cross in n dimensions.
While this is true in special cases, it is not true in general.
This can be seen most easily in the case of the rhombic net
(Table 1). A second solution is obtained by replacing }/g by
— Vg in the solution given. The third and fourth solutions are
obtained from the first two by inversion. It is then clear that
in general the relation between the first two solutions is not
merely a simple interchange of axes.
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in which the characteristic roots A; are distinct* and
the matrices Zy(4;) are given by

N Zy(A) = F()]A' (%) (22a)
;’hthh A'(3) = [dADAR) 3s; - (225)
. Y = gt = ZAZ,%) (23)

is an alternative form for the solution to our problem.
From this expression we see clearly that there are
2" roots and that the result is independent of the
order of naming of the roots and is also independent
of the choice of u in (20) since u does not appear
explicitly in (23).

Numerical example

To illustrate the method for calculating y and hence
E for a general triclinic crystal, the results of the
calculation for copper sulphate pentahydrate are
given. The lattice constants (Beevers & Lipson, 1934)
are

a(a,) = 6:12 A; b(a,) = 10-7 &; c(ay) = 597 &;
*(0rg3) = 82° 16"; B(oigy) = 107° 26'; p(0ryq) = 102° 40';
V =363 A3,

The matrix g and its adjoint G then take the formst}

37-4544 —14-3451 —10-9643
g = <— 143451  114-4900 8-5917) (A2)
—10-9643 8-5917 35-6409
and
4006-71 417-39 1131-98
G = ( 417-39 1214-69 —164-42 ) (A‘) .
1131-98 —164-42 4082-11

From these one calculates the coefficients of the
equation (14), i.e.

A(A) = 83—22trg+Atr G—g =0

in which tr g stands for the trace (i.e. the sum of the
leading diagonal terms) of the matrix g. The numerical
values of these quantities are: tr g = 187-5853 A2;
tr G = 9303-51 A%; and g = 131,666 A®. As a check,
one computes g = 362:85 ~ 363 A3 for the cell
volume. The solution of the characteristic equation by
Horner’s method and factoring then leads to A, =
25-3958 A2; 1, — 43-7882 A2; 1, = 118-4014 A% and
hence to 4, = 5:0394 A; YA, = 66172 A; Y1, =
10-8812 A. Substitution of the 4, values in (21) then
leads to values of the three matrices f(4;) and of their
three adjoints F(4;) which are not given here to save
printing. The values for the quantities (22b) are then
computed as A'(2,)=1710-59 A2; 4’(1,)=—1372-32 A2;
A’(Ag) = 6939,46 A2. The quantities }/4,/4(%;) are then

* If the roots 2;are not distinct, & special form of Sylvester’s
theorem must be used (Frazer e al., 1950, § 3-10).

t Note that several extra figures are carried throughout to
avoid rounding errors (cf. Scarborough, 1950, chap. 1 and also
Frazer et al., 1950, chap. 4).
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computed and used as multipliers for the matrices
F(4;) in computing the expression (23). If positive
signs for the roots are used we obtain

59969 —0-8366 —0-8894
y =|—0-8836 10-6565 0-4744 ) .
—0-8894 0-4744 5-8842

From this the adjoint T' can be calculated, the deter-
minant ¥ and hence the matrix

0-17220 0-01240 0-02503
* =10-01240 0-09507 —0-00579 |,
0-02503 —0-00579 0-01622

which completes the solution to the problem.

Discussion

The existence of the E-systems was first recognized
in the course of the consideration of orthogonal systems
suitable for use with triclinic and monoclinic crystals
in the discussion of bond lengths and bond angles.
It was realized if coordinate vectors only were under
discussion, one matrix and its inverse were needed for
transformation between the base lattice and the
e-system, If, in addition, indices and direction vectors
were needed, a second matrix and its inverse would
be needed to provide the transformation between the
reciprocal lattice and the e-system. Thus a total of
four transformation matrices is required for work in
terms of a general e-system while only two matrices
y and y* are needed if an E-system is used.

For those cases in which the y-matrices can be
written explicitly in terms of the lattice constants
(e.g. Tables 1 and 2) the E-systems may prove to be
very useful. In the orthogonal lattices the choice of the
E-systems is obvious. In other systems a number of
possible e-systems are available and it may be that
the choice of the E-system will prove to be ad-
vantageous.

Acta Cryst. (1952). 5, 833
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It is unfortunate that, for the triclinic system in
which the use of an E-system would undoubtedly be
the most profitable, the calculation of the y-matrices
is the most difficult. It is expected, however, that if the
E-systems prove to be of value, the technique of the
calculation of the y-matrices can be improved con-
siderably.

The existence of the E-systems introduces an
interesting speculation. The problem of the diffraction
analysis of structures depends on the interaction of
data which belong in crystal space, such as atomicity,
positivity, closest approach etc., with data, such as
diffraction amplitude, phase, which belong in reci-
procal space. The transformation of data from one
space to the other always results in considerable in-
crease in complication, as is indicated by the nature of
the many ingenious methods of direct structural
analysis which are now under consideration. The
existence of an E-system ‘midway’ between the
a.system and the a*.system suggests the possibility
of a function space occupying a similar position be-
tween crystal space and transform space. There seems
to be little indication of the nature of the functional
transformation needed, but the y-matrix suggests a
coordinate transformation which would provide a
geometric basis for such a functional space.
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The Crystal Structure of Phosgene, COCI,
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The crystal structure of phosgene is tetragonal Cf,—I4,/a with 16 phosgene molecules in a unit cell
of dimensions @ = b = 15-82, ¢ = 572 A. At —160° C., the crystal is completely ordered, and the
residual entropy of 1-63 e.u. remains unexplained. Parameters, referred to a center of symmetry as
origin, are for Cl;, (0-0394, —0-1417, 0-150); for Cl,, (0-1038, —0-0528, —0-250); for 0, (0-1982,
—0Q-1306, 0-039); and for C, (0-1295, —0-1126, —0-004). Molecular dimensions are C-Cl, =
174 40-02 A, C-Cl, = 1-7440-02 A, C=0 = 1-15+0-02 A, and Cl,-C-Cl, = 111-0+1.5°.

Introduction

As a result of a careful calorimetric study in which
the spectroscopic assignment (Thompson, 1941;

Stevenson & Beach, 1938a, b, ¢) and molecular geometry
(Brockway, Beach & Pauling, 1935) were employed,
Giauque & Jones (1948) have attributed a residual
entropy of 1-63 e.u. to phosgene. The purpose of the



